If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+88x-12=0
a = 8; b = 88; c = -12;
Δ = b2-4ac
Δ = 882-4·8·(-12)
Δ = 8128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8128}=\sqrt{64*127}=\sqrt{64}*\sqrt{127}=8\sqrt{127}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-8\sqrt{127}}{2*8}=\frac{-88-8\sqrt{127}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+8\sqrt{127}}{2*8}=\frac{-88+8\sqrt{127}}{16} $
| 115a-4=26 | | 51x+x+28=180 | | 1x+1=5x-6 | | 72+2=4n+17 | | 3x-2=7x=10 | | 7(7n+7)=-2(3n+3) | | (5x+3)=37 | | 15-y=189 | | (d/10)-15=35 | | y=2(2)+44 | | -6(n+4)=2(6-5n) | | 225m=2475 | | 5(n-3)=-5(3-3n) | | 2(3b-4)=3b+3 | | -4(2v-5)=2(-3v-2) | | 4=n-9=-9+1+2n+12 | | 3(x+5)=50/5 | | 2(3b-4)=2b+5 | | 2(3b-4)=2b+4 | | 2(3b-4)=2b+2 | | 3a+3a=16+6a | | (3x+17)=(4x+2) | | 2(3b-4)=1b+4 | | 11+5x-6x+14=28-3-x | | -7x/6+1/3=-2 | | 22-3a=2(a+1) | | 2(3b-4)=1b+5 | | 2(3b-4)=5b+4 | | 8m+2+4m=2(6m+-) | | 4b/3=b+1/2 | | 10-4y=62 | | 7n+14=-7(6n+5) |